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ABSTRACT

The commonly used FET model is
examined and found to be at best a
difficult structure for modeling a FET’s

Perfo~anCe Statistics. A simpler linear
statistical model based on Principal
Component Analysis is proposed which
results in uncorrelated model parameters.
An example using actual measured GaAs FET
data uses just 13 uncorrelated random
variables to model the FET!s performance
statistics from 1 to 11 GHz.

INTRODUCTION

Statistical circuit design methods are
presently being developed for the design of
high yield microwave circuits. This
emphasis on circuit yield is due in part to
the need for high yield monolithic
microwave integrated circuits. This effort
is accelerating the development of tools
for the statistical design and simulation
of microwave circuits. Presently several
microwave CAD packages offer some sort of
statistical yield ‘Ioptimizer’f for the
design of high yield microwave circuits.

One issue in statistical circuit
design is the statistical modeling of the
microwave components. This area has not
been discussed in the literature. The
purpose of this paper is to analyze the
present methods of FET statistical
modeling, point out difficulties with the
present approach, and propose a new
statistical FET model which has better
statistical properties. Because this might
be a new concept to some, first we will
define what is meant by a statistical
model. To be specific we will consider the
FET as an example.

STATISTICAL FET MODELS

The goal of a statistical FET model is
to accurately describe the statistics of
the FET electrical properties using a small
number of parameters. In general the
description needs to accurately describe
the FETIS statistical behavior over

frequency. The main electrical properties
that are measured by the FET manufacturer
are the FETts 2-port S-parameters. The S-
pararneters are in reality random variables
with a joint distribution function.
Simulation using a valid statistical FET
model will create simulated S-parameters
with the same statistics as the measured S-
parameters.

The present approach to FET modeling
is to extract from the S-parameter data
over frequency a set of FET model
parameters (cg , r ,Ogm, ect.) which “fit”
the data. The ‘fitQ IS accomplished by
determining a set of FET model parameters
for each measured set of S-parameters and
averaging the FET model parameters to give
the nominal FET parametric description.

The procedure presently being used to
statistically model and simulate the FET is
to record the statistics of the FET model
parameters and attempt to recreate the S-
paramter statistics by usin~[ the measured
FET model parameter statist~.cs in the
simulation. This paper will show that this
is a statistically difficult problem at
best. We will propose a simpler and more
effecient statistical model.

Nonlinear Transformations on Random
Variables

The present modeling method starts
with a set of jointly distributed random
variables (S-parameters) ancl maps them
using a nonlinear transformation into
another set of random variables (FET model
parameters).

s <==> M.

In general to recreate the S-parameter
statistics using the model variables two
criteria must be met:

1) the mapping needs to be 1 to 1
2) the joint distribution function

for the M’s must be known.
In practice it. is difficult to determine
and record the full joint distribution of
the model parameters. Usually only the
marginal densities and the correlations and
cross correlations are measured and
recorded. Unless the data is Gaussianr this
is, not sufficient to recreate the S-
parameter joint distributions. A simple
example illustrates this situation.
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Example
Consider two independent random

variables S1 and S2 each uniformly

distributed [0,1]. We will nonlinearly
transform these variables into a new set
by; Ml = S1/S2, and M2 = S2. Ml and M2 are
not independent and furthermore Ml is not
uniform. Ml lies on the interval [O,oo].
Next we attempt to recreate the original S1
and S2 by simulating Ml and M2 according to
their marginal densities and correlations
and mapping Ml and M2 through the inverse
transformation. However this is not
successful because the recreated S1, call
it S1’, lies on the interval [O,oo],
because the inverse mapping is S1’ = Ml *
M2. This illustrates the FET model problem
if one considers S1 and S2 to be the S-
parameters and Ml and M2 to be the model
parameters. To properly recreate S1 in this
example we would need the full joint
distribution function for Ml and M2, not
just the marginal densities and their
correlations. The same holds true in
general for the FET model parameters.

This example illustrates the problem
with the statistical simulation of the FET
electrical performance by using the
standard FET model and the model
parameters; in general the entire joint
density function for the FET parameters
must be known.

A STATISTICALLY EFFICIENT FET MODEL

The goal is to accurately record the
statistical behavior of the FET S-
parameters with a small number of
parameters while using a simple model. The
following approach, based on principal
component analysis accomplishes both of
these.

PrinciDal ComDonent Analvsis
A principal component analysis (PCA)

of a set of m zero mean, unit variance
random variables (Sl,S2, . . ..Sm) creates m
new uncorrelated random variables, the
principal components (PC), Kl, K2, . . ..Km.
with each PC being a linear combination of
the original variables,

K1 = bllsl + b12.S2
K2 = b21Sl + b22S2

that is;

+ . . . + blmSm
+ . . . + b2mSm

.
.

w = bmlSl + bm2S2 + . . . + bmmSm

or in matrix form K = BS [1]. The
coefficients for K1 are chosen to make
variance as large as possible. The
coefficients for K2 are chosen to make
variance as large as possible, subject

its

its
to

the restriction-that K1 (whose variance has
already been maximized) be uncorrelated
with K~. This continues in general for all
the K’s. The important thing to note here
is the statistical description of the K’s

is simplified because they are
uncorrelated. We propose to use these Krs
as the statistical model parameters, and
use the linear m del;

YS=B-K

as the statistical FET model.
An important property of the PCA is

the ability to reduce the number of K’s in
the model by identifying the K’s which are
statistically insignificant. Essentially
the number of significant K’s needed in the
model description represents the number of
independent degrees of freedom present in
the S population. The example which follows
determines that 13 uncorrelated principal
components are needed to represent the S-
parameter Statistics for a 0.5 micron GaAs
FET from 1 to 11 GHz. The reduced mod 1
then becomes the 13 columns of the B-?

matrix that are associated with the 13
significant PC~s.

ExamDle
This example starts with actual

measured S-parameter data from 90 GaAs FETS
from 1 to 11 GHz, We then perform the
principal component analysis, and compare
the marginal densities and the correlations
of the measured and simulated data over the
entire frequency range.

The FETS were fabricated during
January 1987 to June 1987 with TriQuint
Semiconductor Inc. ‘s standard process. The
0.5 X 300 urn FET.S are described in [2].
Data was taken on 90 FF.Ts. Because this is
not a large sampling, this example probably
represents a more difficult modeling
problem than if the number of FETs measured
were larger. The FETS were measured at 1,
3.5, 6, 8.5 and 11 GHz at Id = Idss. The S-
parameter data was put into real and
imaqinary form and since there are four S-
parameters, there are 8 data points for
each frequency. The data for each FET was
arranged into a vector of 40 elements, 8
elements for each frequency times the 5
frequencies at which the PETS were
measured. Therefore the S-parameter data
consisted of 90 vectors of length 40. Each
random variable was normalized to zero mean
and unit variance. This data represents
samples from 40 random variables, and
consequently the joint distribution
function has dimension of 40. The marginal
densities for the 40 S-parameters are not
in general Gaussian or ‘~bell-shapedf~.
Figure 1 shows the marginal density
functions for the real part of S11 at the
five frequencies.

The S-parameter data is also highly
correlated. Tn general a 40 x 40
correlation matrix describes the S-
parameter correlations. samples of this
matrix are shown in Tables I and 2.

A Principal component ana~ys~s was
then initiated on this data using the
S.A.S. statistical analysis package using
the Quartimax rotation [31. This analysis
then gave a 40 X 40 coefficient matrix, B.
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1.00 -0.59 -0.92 -0.29 -0.59 -0.02 0.19 -0.44
-0.59 1.00 0.60 -0.26 0.47 0.55 -0.04 0.72
-0.92 0.60 1.00 0.01 0.57 -0.02 -0.24 0.44
-0.29 -0.26 0.01 1.00 -0.10 -0.41 0.32 -0.28
-0.59 0.47 0.57 -0.10 1.00 0.58 -0.80 0.06
-0.02 0.55 -0.02 -0.41 0.58 1.00 -0.44 0.21

0.19 -0.04 -0.24 0.32 -0.80 -0.44
-0.44

1.00 0.24
0.72 0.44 -0.28 0.06 0.21 0.24 1.00

TABLE 1. The 8X8 correlation matrix of the
measured S-parameters at 3 GHz. The
ordering is real then imaginary parts of
Sll, S12, S21, S22.

1.00 0.97 0.95 0.86 0.76
0.97 1.00 0.99 0.94 0.85
0.95 0.99 1.00 0.97 0.90
0.86 0.94 0.97 1.00 0.98
0.76 0.85 0.90 0.98 1.00

TABLE 2. The 5X5 correlation matrix of
measured real part of S11 at 1, 3.5, 6,
8.5, and 11 GHz presented in this order.

The S.A.S. analysis indicated there were 13
statistically significant principal
components. We then found the appropriate

‘1 to represent the13 columns of B
statistical model. The reduced 40x13 B-l
matrix is partially shown below.

~-l’ =

/-0.962 0.008 ‘0.139 o.117 ‘o.oo4 . . . 0.oo4 I
1-0.973 0.081 -0.001 0.077 -0.001 . . . -0.004 I

1-0.575 -0.150 0.019 ‘o.787 ‘o.o15 . . . ‘o.oo2 I
1 . . . . .

/:::::
I

.
I 0.687 -0.632 0.295 0.042 0.001 . . . -0.021 I

To test the model we simulated the 13
uncorrelated PCIS according to their
marginal distributions, which were
obtained using the measured S-paramter data
and the linear model K = BS. A sample Set
of 500 points was generated. The simulated
S-parameters were then cre $ed from the
reduced order model S = B

-!? K, where B-l’
is the 40x13 reduced parameter matrix.

A comparison was then made between the
measured S-parameter marginal densities and
correlations and the simulated S-parameter
marginal densities and correlations. The
data matched remarkably well considering
the small population of measured data that
was used. Figure 2 shows the simulated
marginal densities of the real part of S11
at 1, 3.5, 6, 8.5, and 11 GHz. Table 3
shows the correlation matrix of the
simulated S-parameters at 3 GHz and Table
4 shows the 5X5 correlation matrix of the
simulated real part of S11 at 1, 3.5, 6,
8.5, and 11 GHz. In general the measured
and simulated data matched well as is
evidenced by a comparison of Figures 1 and
2 and Tables 1,2,3, and 4.

1.00 -0.59 -0.93 -0.35 -0.60 0.01 0.16 -0.42
-0.59 1.00 0.60 -0.20 0.45 0.54 0.02 0.70
-0.93 0.60 1.00 0.10 0.57 -0.05 -0.19 0.40
-0.35 -0.20 0.10 1.00 -0.05 -0.43 0.28 -0.25
-0.60 0.45 0.57 -0.05 1.00 0.57 -0.80 0.03

0.01 0.54 -0.05 -0.43 0.57 1.00 -0.42 0.21
0.16 0.02 -0.19 0.28 -0.80 -0.42 1.00 0.28

-0.42 0.70 0.40 -0.25 0.03 0.21 0.28 1.00

TABLE 3. The 8X8 correlation matrix of the
simulated S-parameters at 3 GHz. The
ordering is real and imaginary parts of
Sll, S12, S21, S22.

1.00 0.97 0.95 0.87 0.77
0.97 1.00 1.00 0.94 0.86
0.95 1.00 1.00 0.97 0.90
0.87 0.94 0.97 1.00 0.98
0.77 0.86 0.90 0.98 1.00

TABLE 4. The 5X5 correlation matrix of
simulated real part of S11 at 1, 3.5, 6,
8.5, and 11 GHz in this order.

CONCLUSIONS

Now that statistical circuit design is
being implemented by the microwave
industry, it is time to carefully study the
models used in microwave CAEI to see if they
are statistically valid. This paper shows
that the present FET model using model
parameter statistics is at best difficult
because the model parameters are correlated
and in general the entire joint
distribution function of the parameters
must be used in the simulation.

A simpler linear statistical model
based on principal component analysis is
proposed and a simple example illustrates
its potential. This example determines 13
uncorrelated random parameters which
statistically describe the FET from 1 to 11
GHz , using only the parameter marginal
distributions.
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FIGURE 1. Marginal Densities For The
Measured Real Part of S11 at a) 1 GHz,
b) 3.5 GHz, c) 6 GHz, d) 8.5 GHz, and
e) llGHz.

-

.926 a .954

.427 6 .558

-.006 c .112

I

-.360 d -.205

r

-.541 e -.405

FIGURE 2. Marginal Densities For The
Simulated Real Part of S11 at a) 1 GHz,
b) 3.5 GHz, c) 6 GHz, d)8.5 G-Iz, and

e) llGHz.
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